Velocity Motion Model (cont)

Velocity Motion Model

center of circle

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}
$$

where

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

Velocity Motion Model

1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:
2 :
$3:$

$$
x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)
$$

4:

$$
y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)
$$

5:

$$
r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}
$$

6:
7:
8:
9:
10 :

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

$$
\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)
$$

$$
\hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}
$$

$$
\hat{\omega}=\frac{\Delta \theta}{\Delta t}
$$

$$
\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
$$

$$
\text { return } \operatorname{prob}\left(v-\hat{v}, \alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)
$$

$$
\cdot \operatorname{prob}\left(\hat{\gamma}, \alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)
$$

Velocity Motion Model

rotation of $\Delta \theta$ about ($\mathrm{x}^{*}, \mathrm{y}^{*}$) from (x, y) to ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) in time $\Delta \mathrm{t}$

Velocity Motion Model

- given $\Delta \theta$ and Δ dist we can compute the velocities needed to generate the motion

$$
\hat{u}_{t}=\binom{\hat{v}_{t}}{\hat{\omega}_{t}}=\binom{\Delta \operatorname{dist} / \Delta t}{\Delta \theta / \Delta t}
$$

- notice what the algorithm has done
- it has used an inverse motion model to compute the control vector that would be needed to produce the motion from x_{t-1} to x_{t}
- in general, the computed control vector will be different from the actual control vector u_{t}

Velocity Motion Model

- recall that we want the posterior conditional density

$$
p\left(x_{t} \mid u_{t}, x_{t-1}\right)
$$

of the control action u_{t} carrying the robot from pose x_{t-1} to x_{t} in time Δt

- so far the algorithm has computed the required control action \hat{u}_{t} needed to carry the robot from position ($\mathrm{x} y$) to position (x'y')
- the control action has been computed assuming the robot moves on a circular arc

Velocity Motion Model

- the computed heading of the robot is

$$
\hat{\theta}=\theta+\Delta \theta
$$

the heading should be

$$
\theta^{\prime}
$$

$$
\begin{aligned}
\theta_{\text {err }} & =\theta^{\prime}-\hat{\theta} \\
& =\theta^{\prime}-\theta-\Delta \theta
\end{aligned}
$$

the difference is

- or expressed as an angular velocity

$$
\begin{aligned}
& \gamma_{\text {err }}=\frac{\theta_{\text {err }}}{\Delta t} \\
&=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega} \\
& \text { Line } 9, \\
& \text { Eq 5.25, } 5.28
\end{aligned}
$$

Velocity Motion Model

similarly, we can compute the errors of the computed linear and rotational velocities

$$
\begin{aligned}
v_{\text {err }} & =v-\hat{v} \\
& =\frac{\Delta \mathrm{dist}}{\Delta t} \\
\omega_{\mathrm{err}} & =\omega-\hat{\omega} \\
& =\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

Velocity Motion Model

- if we assume that the robot has independent control over its controlled linear and angular velocities then the joint density of the errors is

$$
p\left(v_{\mathrm{err}}, \omega_{\mathrm{err}}, \gamma_{\mathrm{err}}\right)=p\left(v_{\mathrm{err}}\right) p\left(\omega_{\mathrm{err}}\right) p\left(\gamma_{\mathrm{err}}\right)
$$

- what do the individual densities look like?

Velocity Motion Model

- the most common noise model is additive zero-mean noise, i.e.

$$
\begin{aligned}
& \qquad\binom{\hat{v}}{\hat{\omega}}=\binom{v}{\omega}+\binom{v_{\text {noise }}}{\omega_{\text {noise }}} \\
& \text { actual commanded noise } \\
& \text { velocity velocity }
\end{aligned}
$$

- we need to decide on other characteristics of the noises
" "spread"
b "skew" variance
" "peakedness" kurtosis
- typically, only the variance is specified
* the true variance is typically unknown

Velocity Motion Model

- the textbook assumes that the variances can be modeled as

$$
\begin{aligned}
& \operatorname{var}\left(v_{\text {noise }}\right)=\alpha_{1} v^{2}+\alpha_{2} \omega^{2} \\
& \operatorname{var}\left(\omega_{\text {noise }}\right)=\alpha_{3} v^{2}+\alpha_{4} \omega^{2}
\end{aligned}
$$

Eq 5.10
where the α_{i} are robot specific error parameters
v the less accurate the robot the larger the α_{i}

Velocity Motion Model

- a robot travelling on a circular arc has no independent control over its heading
। the heading must be tangent to the arc

$$
\theta^{\prime}=\theta+\hat{\omega} \Delta t
$$

this is problematic if you have a noisy commanded angular velocity ω

- thus, we assume that the final heading is actually given by

$$
\theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t \quad \text { Eq } 5.14
$$

where $\hat{\gamma}$ is the angular velocity of the robot spinning in place

Velocity Motion Model

the book assumes that

$$
\begin{aligned}
& \qquad \hat{\gamma}=0+\gamma_{\text {noise }} \\
& \text { actual } \\
& \text { velocity }
\end{aligned} \quad \text { noise }
$$

where

$$
\operatorname{var}\left(\gamma_{\text {noise }}\right)=\alpha_{5} v^{2}+\alpha_{6} \omega^{2}
$$

Eq 5.15

