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 center of circle 
 
 
 
where 
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 rotation of Δθ about (x*, y*) from (x, y) to (x’, y’) in time Δt  
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 given Δθ and Δdist we can compute the velocities needed to 
generate the motion 
 
 
 
 

 notice what the algorithm has done 
 it has used an inverse motion model to compute the control vector 

that would be needed to produce the motion from xt-1 to xt  
 in general, the computed control vector will be different from the 

actual control vector ut  
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 recall that we want the posterior conditional density 
 
 
 
of the control action ut carrying the robot from pose xt-1 to xt 
in time Δt  

 so far the algorithm has computed the required control action 
     needed to carry the robot from position (x y) to position 
(x’ y’)   
 the control action has been computed assuming the robot moves 

on a circular arc 
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 the computed heading of the robot is 
 
 the heading should be 
 
 the difference is 
 
 or expressed as an angular velocity 
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 similarly, we can compute the errors of the computed linear 
and rotational velocities 
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 if we assume that the robot has independent control over its 
controlled linear and angular velocities then the joint density 
of the errors is 
 
 
 

 what do the individual densities look like? 

)()()(),,( errerrerrerrerrerr γωγω ppvpvp =



Velocity Motion Model 

2/10/2012 10 

 the most common noise model is additive zero-mean noise, 
i.e. 
 
 
 
 

 we need to decide on other characteristics of the noises 
 “spread”  variance 
 “skew”  skew 
 “peakedness” kurtosis 

 typically, only the variance is specified 
 the true variance is typically unknown 
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 the textbook assumes that the variances can be modeled as 
 
 
 
 
 
where the αi are robot specific error parameters 
 the less accurate the robot the larger the αi  
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 a robot travelling on a circular arc has no independent control 
over its heading 
 the heading must be tangent to the arc 

 
 

 this is problematic if you have a noisy commanded angular 
velocity ω  

 thus, we assume that the final heading is actually given by 
 
 
 
where     is the angular velocity of the robot spinning in place 
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 the book assumes that 
 
 
 
 
where 
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